

Engineering Base

Manufacturing Leitungsstrangsychronisation

Juli 2017

AUCOTEC AG

Oldenburger Allee 24 D-30659 Hannover Phone:+49 (0)511 61 03-0 Fax: +49 (0)511 61 40 74

www.aucotec.com

Urheberrecht: Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung, bleiben vorbehalten. Kein Teil dieses Buches darf ohne vorherige schriftliche Zustimmung von **AUCOTEC AG** in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Haftungsausschluss: Texte und Software wurden mit größter Sorgfalt erarbeitet. Herausgeber und Autoren können für etwaige fehlerhafte Angaben und deren Folgen weder eine juristische noch irgendeine Haftung anders lautender Art übernehmen.

Warenzeichen: Engineering Base® ist ein eingetragenes Warenzeichen der AUCOTEC AG, Deutschland. Microsoft Office Visio®, Microsoft SQL Server und Windows® sind eingetragene Warenzeichen der Microsoft Corporation, USA.

Inhalt

1	Aanufacturing Leitungsstrangsynchronisation

1 Manufacturing Leitungsstrangsynchronisation

Der Assistent **Manufacturing Leitungsstrangsynchronisation** dient der Synchronisierung von zwei Leitungssträngen. Die Synchronisierung zwischen Quell- und Zielleitungsstrang kann dabei auf ausgewählte Module oder Varianten beschränkt werden. Voraussetzung für ein Funktionieren dieser Option ist eine vorherige Modularisierung aller Elemente des Leitungsstranges (siehe **Module Assignment Wizard**).

Wie Sie zwei Leitungsstränge synchronisieren:

- 1. Selektieren Sie im Explorer das Projekt des Quellleitungsstranges.
- 2. Wählen Sie im Kontextmenü Makro auswählen.
 - Der Dialog Makroauswahl wird geöffnet.
- 3. Selektieren Sie **Manufacturing Leitungsstrangsynchronisation** und klicken Sie **Start**.

Der Dialog Manufacturing Leitungsstrangsynchronisierung wird geöffnet.

Manufacturing Leitungsstrar	ngsynchronisierung (3.1.25.0)	
	Manufacturing Leitungsstrangsynchronisierur	ng (3.1.25.0)
	Synchronisierung zweier EB-Leitungsstränge	
	Zum Fortsetzen auf Weiter klicken.	
	Abbrechen < Zurück Weiter	> Fertig

4. Klicken Sie Weiter >.

Quell- und Zielleitungsstrang auswählen			
Leitungsstrangauswahl			٢
Quellleitungsstrang			
Zielleitungsstrang EBCable - Solution MD 30Leit	ungsstränge ABS		
Optionen für das Deltamanagement			
Behalte Topologie			
Behalte Komponenten			
Kammern nicht Löschen Zwingend notwendige Objekte nicht löschen			
Knoten-Sub-Komponenten, die nicht in impor	rtierter Datei vorhanden si	nd, nicht löschen.	
Behalten Sie die Drahtkomponenten bei			
Behalte Verdrahtung			
Behalte Varianten			
Behalte Objekte von nicht ausgewählten Modul	en/Varianten		
Behalte Objekte mit Flag 'Herkunft Fertigung'			

5. Klicken Sie in der Zeile **Quellleitungsstrang**

EBCable - Solution MD Projekte	
□ 1 EBCable - Solution DD Std 1	
🗄 Revisionen	
🖃 🚂 Betriebsmittel	
🗉 💽 Automatische Drähte	
🗉 🤮 Netseparators	
표 🌉 10_Verwendungsstellen	
🗉 🕌 20_Trennstellen	
30_Leitungsstränge	
	E
B Ropierkold B B Copierkold	
🗉 👔 Dokumente	
⊞ Inweise	
🗉 🛄 Vorlagen	
🗄 🚰 Add-Ins	
🗉 📴 Papierkorb	
🗉 📕 EBCable - Solution MD	
🗉 📕 EBCable - Solution Modularisierung	•

Der Dialog Leitungsstrangauswahl wird geöffnet.

- 6. Klicken Sie den Reiter **Projekte**, wenn Sie den Quellleitungsstrang eines anderen Projektes auswählen wollen.
- 7. Selektieren Sie den Quellleitungsstrang und klicken Sie **OK**.

Der Dialog Leitungsstrangauswahl wird geöffnet.

- 9. Klicken Sie den Reiter **Projekte**, wenn Sie den Zielleitungsstrang eines anderen Projektes auswählen wollen.
- 10. Selektieren Sie den Zielleitungsstrang und klicken Sie **OK**.
- 11. Markieren Sie diejenigen **Optionen für das Deltamanagement**, die Sie verwenden wollen.
- 12. Klicken Sie Weiter >.

Der Dialog **Deltamanagement** wird geöffnet. Er bietet einen Überblick über die Unterschiede zwischen den Quell- und Zielleitungssträngen. Sie können diesen Dialog dazu verwenden um zu spezifizieren, welche Aspekte der Abweichungen Sie im Synchronisationsprozess berücksichtigen wollen.

Deltamanagement	
Quellleitungsstrang 30Leitungsstränge ABS EB-Projekt: EBCable - Solution MD Zielleitungsstrang 30Leitungsstränge ABS	
 Leitungsstrang Topologie Komponenten Verdrahtung Varianten Module Blätter Derivative Projekt Potenziale 	
Seu	aus Katalog 🧐 = Unterobjekte geändert 🛛 🛒 = aus Katalog
	Abbrechen < Zurück Weiter > Fertig

13. Markieren Sie die Strukturen oder Unterstrukturen des Leitungsstranges auf die Sie den Synchronisationsprozess beschränken wollen.

Quellelitungsstrang 30Leitungsstrange ABS BP-Projekt: EBCable - Solution MD Zellelitungsstrang 30Leitungsstrange ABS Leitungsstrang 30Leitungsstrange ABS Leitungsstrang Solution MD Leitungsstrang Solution MD Leitungsstrang Solution MD Leitungsstrang Solution MD Verzweigungspunkte Solution MD Segment 1 -	Deltamanagement													
Leitungstrang Status Typ Name Ziel 1 Ziel 2 Kommenta Biegeratius Lange EMV Verträgi Gewich During Konten Sogmente Sogment 1 - 3 1 3 1 196 2 2.9 13.98 Verzweigungspunkte Sogment Sogment 1 - 3 1 X1A139.1 Szge 200 2 6 5.9 5.9 5.9 5.8 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	uellleitungsstrang 30Leitungsstränge ABS B-Projekt: EBCable - Solution MD ielleitungsstrang 30Leitungsstränge ABS													
✓ Sponente ✓ Segment 1 - 3 1 3 11.96 ✓ 2.9 13.98 ✓ Segment ✓ Segment 1 - 3 1 3 11.96 ✓ 2.9 13.98 ✓ Verzweigungspurkte ✓ Segment ✓ Segment 1 - XX1A139.1 XX1A139.1 5.29 200 ✓ 6.6 ✓ 5.29 ▶ Komponenten ✓ Segment ✓ Segment 2 - 3 2 3 15.62 ✓ 500 5.8 5.9 8.96 ▶ Verdrahtung ✓ Segment 2 - 3 2 3 15.62 ✓ 500 5.6 14.89 ▶ Verdrahtung ✓ Segment 2 - 3 2 3 15.62 ✓ 500 5.6 14.89 ▶ Verdrahtung ✓ Segment 2 - 3 2 3 11.826 47.3 18.26 ▶ Derivaive ✓ Segment 2 - 3 2 3 14.89 200 5.6 14.89 ▶ Otenziale ✓ Segment 3 - XX4A139.1 3 XX4A139.1 10.04 200 2.8 11.75	🔺 Leitungsstrang 🕴 🗙 📝 🔮 🔽	Status	Ту	ур	Name	Ziel 1	Ziel 2	Kommentar	Biegeradius	Länge	EMV Verträglic	Gewicht	Durchmes	S
Verzweigungspunkte * X X Segment 1 - XX1A139.1 XX1A139.1 S29 200 × 100 6 × 2 5.29 Bemaßungen X Segment 1 - XX1A139.1 XX1A139.1 S29 200 × 100 5.8 8.96 Verdrahtung V Segment 2 - 3 2 3 15.62 550 31.9 1562 Varianten V Varianten V Segment 2 - 13 X 13 2 14.89 200 5.6 14.89 Blätter V V Segment 2 - 13 X 13 2 14.89 200 5.6 14.89 Potenziale V Segment 2 - 13 X 13 2 14.89 200 5.6 14.89 Verdrahtung V Segment 2 - 13 X 10.04 47.3 18.26 15.6 47.7 Potenziale V Segment 3 - XX4A139.1 XX4A139.1 10.04 200 × 200 5.6 4.0 11.75 100 2.8 11.44 11.75 100 2.8 11.75 13.23 150 14.20 13.23 13.2	A Topologie Segmente Knoten X X		Se Se	gment	1 - 3	1	3		11,96 🗹 13,98	50		1,5 🔽 2,9	11,96 🗖 13,98	1
b Komponenten Komponenten	Verzweigungspunkte 🔂 🗙 🕺 🖉 Bemaßungen		Se	gment	1 - XX1.A139.1	1	XX1.A139.1		5,29 🔽 8,96	200 🗹 100		6 🗹 5,8	5,29 🛛 8,96	ī
b Module Blatter Image: Segment 2-13 Image: 13 - 2 13 2 14.89 Image: 16.09 200 5.6 14.89 16.09 b Derivative Projekt Image: 13 - 2 13 2 14.89 Image: 16.09 200 5.6 14.89 16.09 point interprotein Image: 13 - 2 13 2 01911A1 47 50 16.5 47 Projekt Image: 14 - 2 Segment 2 - X01911A1 2 X01911A1 47 50 16.5 47 Image: 14 - 2 Segment 3 - XX4.A139.1 3 XX4.A139.1 10.04 200 Image: 15 5.6 10.04 11.75 200 Image: 15 5.6 10.04 11.75 Image: 14 - 2 Segment 3 - XX4.A139.1 3 XX4.A139.1 10.04 Image: 15 10.04 2.8 10.04 11.75 2.8 10.04 11.75 2.8 10.04 11.75 10.0 2.8 10.04 11.75 11.04 11.75 10.0 2.8 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34 11.34	 Komponenten Verdrahtung Varianten Module Blätter Ør 		Se Se	gment	2 - 3	2	3		15,62 🗹 18,26	550		31,9 🔽 47,3	15,62 🛛 🕅 18,26	Ţ
Derivative Potenziale Derivative Potenziale Segmen 2-X01911A1 2 X01911A1 4,7 50 16.5 4,70 Potenziale Segmen 3-XX4A139.1 3 XX4A139.1 10,04 11,75 20 20 2,8 10,04 11,75 20 2,8 10,04 11,75 20 2,8 10,04 11,75 100			🗹 Se	gment	2 - 13 🛛 🕅 13 - 2	13	2		14,89 🔽 16,09	200		5,6	14,89 関 16,09	7
Potenziale Segment 3 - XX4A139.1 XX4A139.1 10,04 11,75 200 20 20 20 20 20 20 20 20 20 20 20 20	Derivative	0	Se	gment	2 - X0191.1A1	2	X0191.1A1		4,7	550		16,5	4,7	
Segment S-4 4 S 13,23 150 4.2 13,23 Segment 5-5 5 6 11,24 50 9.8 11,34 Segment 5-7 6 7 6 7.8 9.56 250 7 9.56 Segment 7-XX129.1 7 KAY129.1 6.6 250 10 7 4.6 Segment 8-4 4 8 7.6 150 10 7 7.6 Segment 8-XAB119.1 8 KAB19.1 3.8 200 10 3.8	Potenziale		✓ Se	gment	3 - XX4.A139.1	3	XX4.A139.1		10,04 🗹 11,75	200 🗹 100		5,6 🔽 2,8	10,04 🗖 11,75	1
Image: Segment 5-5 5 6 11.34 350 9,8 11.34 Image: Segment 6-7 6 7 8 7 9,56 250 7 9,56 Image: Segment 7-XX129.1 7 XAY129.1 4.6 250 7 4.6 Image: Segment 8-4 4 8 7.6 150 10 7 7.6 Image: Segment 8-XAB119.1 8 XAB19.1 1.8 200 10 3.8		0	✓ Se	gment	5 - 4	4	5		13,23	150		4,2	13,23	
Image: Segment 6 - 7 6 7 9,56 250 7 9,56 Image: Segment 6 - 7 6 7 8 7 8,60 250 7 9,56 Image: Segment 7 - XAY129.1 7 XAY129.1 4.6 250 7 4.6 Image: Segment 8 - 4 4 8 7 7.6 150 1 7 7.6 Image: Segment 8 - XAB119.1 8 XAB19.1 3.8 200 1 3.8 3		0	✓ Se	gment	6 - 5	5	6		11,34	350		9,8	11,34	
Segment 7 - XAY129.1 7 < XAY129.1 4.6 250 7 4.6 Segment 8 - 4 4 8 7.6 150 0 7.6 Segment 8 - 4 4 8 7.6 150 0 7.6 Segment 8 - XAB119.1 8 XAB119.1 3.8 200 0 3.8		0	🗸 Se	gment	6 - 7	6	7		9,56	250		7	9,56	
Segment 8 - 4 4 8 7.6 150 0 7.6 Segment 8 - XAB119.1 8 XAB119.1 3.8 200 0 3.8		6	✓ Se	gment	7 - XA.Y129.1	7	XA.Y129.1		4,6	250		7	4,6	
Segment 8 - XAB119.1 8 XAB119.1 3.8 200 0 3.8		0	Se Se	gment	8 - 4	4	8		7,6	150		0	7,6	
		•	Se Se	gment	8 - XA.B119.1	8	XA.B119.1		3,8	200		0	3,8	
Neu SeGeändert X = Gelöscht 🖨 = Vorhanden 🚯 = Unterobiekte geändert 🛒 = aus Katalog	= Neu = Geändert X = Gelöscht	= Vorhand	en I	🔔 = Ur	nterobiekte geä	ndert	🦸 = aus	Katalog						
iste Grafik	iste Grafik			- 51			e 303							

14. Klicken Sie den Reiter **Grafik** unter dem Dialogfenster, um die Veränderungen der Topologie in grafischer Form zu sehen.

Der Dialog Grafik wird geöffnet.

- 15. Klicken Sie Weiter >.
- 16. Markieren Sie die grafischen Optionen unterhalb von **Grafikoptionen**, die Sie angewandt wissen wollen.
- 17. Klicken Sie **Topologieeditor**, um den **Topologieeditor** zu öffnen.

Mit Hilfe des **Topologieeditors** können Sie Teile der Topologie ausschließen.

- Klicken Sie Weiter >, um den Synchronisationsprozess zu starten.
 Sobald der Synchronisationsprozess beendet ist, wird der Dialog Fertig geöffnet.
- 19. Markieren Sie die Reports oder Hinweisobjekte, die Sie erzeugen wollen.
- 20. Klicken Sie Fertig.

Die Reports und die Hinweisobjekte können im Projekt unterhalb von **Hinweise** -> **Manufacturing Import Export** -> **<Datum> <Zeit>** gefunden werden.