

Engineering Base

Formula Attributes

December 2019

AUCOTEC AG
Hannoversche Str. 105

D- 30916 Isernhagen

Phone: +49 (0)511 61 03-0

Fax: +49 (0)511 61 40 74

www.aucotec.com

AUCOTEC, INC.
2701 Troy Center Drive,

Suite 440

Troy, MI 48084

Phone: +1 630 485 5600

Fax: +1 248 655 7800

http://www.aucotec.com/

Copyright: All rights, especially the right of reproduction and distribution as well as

translation, are reserved. No part of this book may be reproduced, stored in retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopy-

ing, microfilming, recording, or otherwise, without prior permission from AUCOTEC AG.

Exclusion of liability: Texts and software have been prepared with the greatest of care.

The publishers as well as the authors cannot assume any legal or other liability of any

nature for potential faulty statements and their consequences, which shall apply also for

the software potentially included.

Trademarks Engineering Base® is a registered trademark of the AUCOTEC AG, Ger-

many. Microsoft Office Visio®, Microsoft SQL Server and Windows® are registered trade-

marks of Microsoft Corporation, USA.

Content

i

Content

1 What are formula attributes? ... 1

1.1 Definition of the formulas ... 1

1.2 Basics in the creation of formula attributes .. 4

1.3 Where are formula attributes defined? ... 7

2 Definition of the formula attributes .. 8

2.1 Integration of system information .. 8

2.1.1 Version information .. 8

2.1.2 Environment information .. 9

2.1.2.1 Date and time ..10

2.1.2.2 Environment Text ...11

2.1.2.3 Environment Language ..11

2.2 Integration of texts .. 12

2.3 Integration of attributes ... 13

2.4 Access to higher-order objects (aggregations) 16

2.4.1 Parent objects ..16

2.4.2 Bottom Up ...16

2.4.3 Mostup Parent ..17

2.4.4 Top Down ..18

2.5 Navigation aids ... 19

2.5.1 Object Navigation ...19

2.5.2 Object navigation with brackets ..20

2.6 Access to associated objects (association) ... 22

2.6.1 Relation Role ..23

2.6.2 Relation Multi ...26

2.6.3 Relation object groups ...27

2.7 Integration of mathematical operations ... 29

2.8 Object check ... 32

2.9 Conditions... 33

2.10 Annex ... 37

2.10.1 Output formatting ...37

What are formula attributes?

- 1 -

1 What are formula attributes?

Formula attributes are individually definable formulas you can use to access system in-

formation and object attributes. Their purpose is to represent attributes of "pertinent"

objects in compact form. For this purpose the access to the attributes of other objects is

controlled via the relation of the source object.

To create formula attributes, you need good knowledge of the EB object struc-

ture as well as programming know-how.

Formula attributes can be used in dialog masks, for shape editing, in graphics and in

worksheets.

A formula attribute enables:

• Navigation within the object structure.

• Access to attributes and read out of the values.

• Extraction of substrings from a text value.

• Creating conditional queries.

• Mathematical operations.

• Access to version and environment information.

The task:

"Represent the devices connected to a wire with their reference designator, material

number and associated functions (in brackets)"

can e.g. be realized with formula attributes.

1.1 Definition of the formulas

The total string of a formula attribute is composed of interconnected or nested access de-

scriptions.

A simplified version of an access description is structured as follows:

KeyIdentifierVariables;

The key identification controls the kind of access to attributes, attribute information or

system information.

What are formula attributes?

- 2 -

Example:

Create a formula attribute at a terminal that gives out the name of the terminal block,

the name of the terminal and the unit.

Formula used:

Result of the formula: -0X1 : 1+C1

The following must be heeded when creating a formula:

• A formula may consist of several instructions.

• The individual parts of the formula must always be separated by a semicolon (;).

• The length of the formula is limited to 1,000 characters.

• At the end of the formula, a semicolon (;) is mandatory.

• A key identification consists in most cases of one or two letters.

• Formula attributes cannot be used recursively.

What are formula attributes?

- 3 -

• The evaluation of a formula attribute is aborted if it is impossible to navigate to a re-

quested object.

• For parameters and variables, small/capital letters must be observed.

• Folder objects are not taken into account in the search for parent objects. This holds

in particular for the navigation steps counted.

Formula attributes must by all means be created in a test environment and

tested for their applicability! We strongly advise you against creating and test-

ing the formula attributes in the productive working environment!

What are formula attributes?

- 4 -

1.2 Basics in the creation of formula attributes

For each object, all of the information (e.g. device designation, associated function, etc.)

is stored in attributes. The objects are assigned to certain global types (e.g. project type,

device type, cable type, etc.) and subordinate types (connector group, generator, motor,

etc.) using single attributes.

In the Engineering Base database, the objects are stored in a hierarchical structure.

This structure makes it possible to access the attributes of all objects within a database

that have a relation with the source object. System information (e.g. EB version date,

etc.) can likewise be shown.

Using the hierarchical structure, you can deliberately access the attributes of superordi-

nate (parent) or subordinate objects (child).

Using the global type definition, the cover ID (CID) and the type definition (TID) you can

selectively access the attributes of certain object types.

Setup of the object hierarchy:

Relationships between the objects:

• Child: Object that is subordinate to the source object (for example, devices are chil-

dren of the unit).

• Parent: Object superordinate to the source object (for example, the unit is a parent

object of devices).

Associations between objects are relations via roles (for example, the relation between

pin and wire). Relations have a starting point and an end point, that is a direction.

When accessing associated or superordinate objects, "forward" and "backward" naviga-

tion is possible. Multiple results can be recorded.

When an associated or superordinate object is accessed, then this becomes the "current"

object, and all subsequent attribute functions are carried out with this object.

What are formula attributes?

- 5 -

Global type definition (CID):

Specific attributes are assigned to each object. The assignment of the attributes is con-

trolled by the global type definition (CID).

One cover ID (CID) is assigned for each global type definition.

Examples of CIDs:

Equipment 7

Project 10

Unit 112

Devices 113

A list of all applicable CIDs is provided by the EB WebHelp in the chapter Refer-

ences.

For internal purposes Engineering Base uses additional CIDs apart from the above-men-

tioned type definitions.

https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_cover_ids.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm

What are formula attributes?

- 6 -

Type definition (TID):

The global object types (CID) are further subdivided into object types (TID).

Object types of the global object type device types (CID 113)

One type ID (TID) is assigned for each object type.

Examples of TIDs:

Motor 123

Terminal 136

PE 141

A list of all applicable TIDs is provided by the EB WebHelp in the chapter Refer-

ences.

https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_type_ids/all_object_types.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm

What are formula attributes?

- 7 -

1.3 Where are formula attributes defined?

 In Engineering Base open a database for testing formula attributes or create a

new database for this purpose.

 In the Engineering Base Explorer, click on Database.

 Select the folder Attributes.

 In the context menu, point at New, then click on Attribute.

The dialog New Attribute is opened.

 In the field Designation, enter the name of the new attribute. With CTRL+F3 you

can select an entry from the DB dictionary or if required create a new one.

 Mark Formula under Attribute Type.

 Enter the desired formula in the adjacent field.

 Click OK to create the new attribute.

 Restart Engineering Base.

 Test the formula attribute for all required use cases before taking it over in your pro-

ductive Database.

The newly created formula attribute can now be used.

Definition of the formula attributes

- 8 -

2 Definition of the formula attributes

The following detailed descriptions of formula attributes are based on the Engi-

neering Base version 6.4.1. Older versions may lack some language elements.

Legend of the syntax description:

Bold type Literals (key identifications, variables and mandatory characters

of an instruction (;, {, }, …).

Italics User entries are recorded in italics.

< term > A term in angle brackets is used as placeholder for a number of

different values whose meaning is later on explained in detail.

[] Encloses the optional parts of an instruction.

| Separator (exclusive OR) between alternative entries.

2.1 Integration of system information

2.1.1 Version information

Key identification V Version

Syntax:

V [v] [b];

V; Engineering Base Version number. Build number.

Vv; Engineering Base Version number.

Vb; Build number of the Engineering Base version.

Definition of the formula attributes

- 9 -

2.1.2 Environment information

Key identification Eu Environment User information

Syntax:

Eu [f | s | n | c | <AccountSelData>];

Euf; Full Name - user name (default).

Eus; Short Name – short user name

Eun; Windows login Name

Euc; Computer name.

Extended user account data can be displayed with <AccountSelData>.

Eu0; NameFullyQualifiedDN

Name, unambiguously fully qualified

Examples CN=Paula Mustermann, OU=User, OU=AUCOTEC,

DC=aucotec,DC=com.

Eu1; NameSamCompatible

Account name, example AUCOTEC/PMu.

Eu2; NameDisplay

Name, example Paula Mustermann.

Eu5; NameUniqueId

Unambiguous identifier of the name, example {edf3accf-47d2-

4d5f-9d49-efea0f4ea8a18}.

Eu6; NameCanonical

Canonical name, example aucotec.com/OU-Us-

ers/AUCOTEC_DE/User/OU-GS/Paula Mustermann.

Eu7; NameUserPrincipal

Example PMu@aucotec.com.

Eu8; NameCanonicalEx

Extended canonical name, example aucotec.com/OU-Us-

ers/AUCOTEC_DE/User/OU-GS/

Paula Mustermann.

Definition of the formula attributes

- 10 -

2.1.2.1 Date and time

Key identification Ed Environment date and time

Syntax:

Ed [d | D | t] ["<time format specification>"];

d Short version of the date based on the current settings under

control panel / region and language.

D Long version of the date based on the current settings.

t Time based on the current settings.

Time format spec-

ification

%x Date in the format of the current country settings, ex-

ample DD.MM.YYYY.

%a Day of the week in short form, e.g. We for Wednesday.

%A Day of the week.

%d Day as decimal number (DD, 01-31)

%j Day as decimal number (001-366)

%w Day of the week as decimal number (0-6, Sunday =0).

%b Month in short form, example Aug for August.

%B Month.

%m Month as decimal number (01-12).

%y Year in short form, example 14 for 2014.

%Y Year.

%U Week number (00-53, Sunday first day of the week).

%W Week number (00-53, Monday first day of the week).

%c Date and time (DD.MM.YYY hh.mm.ss)

%H Hours in the 24-hour format (00-23).

%h Hours in the 12-hour format (01-12).

%M Minutes as decimal number (0-59).

%S Seconds as decimal number (0-59)

%X Time in the format of the current country settings, ex-

ample hh.mm.ss.

%z,

%Z

Time zone, for example Central European Time.

%% Percent character.

Example:

Formula: Value of the formula attribute (character string):

Ed"%x"; Date in the format of the current country settings, example

DD.MM.YY.

Edt"%X"; Time in the format of the current country settings, example

hh.mm.ss.

Definition of the formula attributes

- 11 -

2.1.2.2 Environment Text

Key identification Et Environment Text. Controls the sequence of the formula attrib-

ute output if it consists of more than one result.

Thus e.g. values from the object can be hierarchically deter-

mined in upward direction yet be displayed in the other direc-

tion (top down) without having to repeatedly go through the hi-

erarchy.

Syntax:

Et l | r;

Etl; The output is from right to left.

Etr; The output is from left to right (default).

2.1.2.3 Environment Language

Key identification El Suppression of the translation (Language).

Switches off the translation of contained translate elements for

the complete formula. Contained references are output in the

form <l:ttt-dd>, e.g. <0:100-24> , where

l = Selection of the language via translate setting of the project

ttt = Text number

-dd = Dictionary ID; (can be absent with global reference).

Syntax:

El;

Definition of the formula attributes

- 12 -

2.2 Integration of texts

Key identification " " Entering of free text (character strings) or translate references

Syntax:

"<free text> | [<translate references>] | [\<control characters>] ";

"free text"; Any character string may be entered between the inverted

commas and is inserted into the result of the formula attribute.

Translate references can be inserted via the 'display format'

<0:4711>.

\control

characters

Control characters are predefined special char-

acters or direct character codes that influence

the output. Currently the input of the character

codes is only supported in hexadecimal form

(max. 4 places, leading zeros permitted, corre-

sponds to the Windows character codes)

Examples of formulas:

Formula: Value of the formula attribute (character string):

"Test Text

<0:100>";

"Test text device list (structured)".

"Test Text\0A"; "Test text" with subsequent carriage return.

Definition of the formula attributes

- 13 -

2.3 Integration of attributes

To be able to integrate attributes, the attribute ID (aid) of the desired attribute must be

known.

You can display the attribute ID in the object properties, the attribute properties or have

it shown in the list view of all attributes.

Key identification A Simple attribute access (scalar attributes)

Syntax:

A [<modif>] ["<prefix>"] < aid > ["<postfix>"]

 [([<numchar> [:<poschar>]] [[prefix F] "<fieldformat>"])];

modif Selector for special predefined attributes

F AF ["<prefix>"] aid ["<postfix>"] (<value>);

Test whether the specified attribute flags (manual, au-

tomatic, ...) are set.

Result:

1 or prefix if the flag is set.

0 or postfix if the flag is not set.

Value ID number of the flag

2 = Attribute is read only

4 = Attribute value is empty

256 = manually entered value

1024 = Attribute value from the catalog

2048 = Translate text exists

8192 = Attribute is write protected

j Ajaid;

Access to project attributes; the project object becomes

the current object

J AJaid;

Access to project attributes; the current object remains

unchanged.

r Ar;

Classical reference designator of the object. (with part

of..).

R AR;

Reference designator of the object with path output

(with folder).

o or 1 Ao; or A1;

Object ID of the object.

c or 2 Ac; or A2;

Cover ID of the object.

Definition of the formula attributes

- 14 -

t At;

Type ID of the object.

C ACaid;

Comment attribute.

Prefix /

Postfix

Character string that is inserted before or after the attribute

value if the latter is not empty.

aid Attribute reference (numerical or predefined C, r, R).

numchar Number of characters to be shown of the value determined for

the formula attribute (>0 start from the beginning; <0 start

from the end).

poschar Position of the character from which to start.

Field format Specifies the precise length of the character string including

substitute characters to be inserted.

For the prefix F = "-", "e" und "f" the meaning is different (see

below).

Prefix F Prefix for field format.

-'0 Leading zeros are deleted.

- The characters in "Field format" are eliminated from the

value of the formula attribute.

e "Field format" is used only if the value of the formula

attributes is not empty.

f "Field format" is interpreted as c-conforming format

string.

Possible output formatting is described in the annex.

Examples of formulas with attributes:

Formula: Value of the formula attribute (character string):

A"Präfix"aid"Postfix"; Prefix/Postfix = character string that is inserted before

or after the attribute value if the latter is not empty.

Aaid(number); Display of a specified number of characters (>0 start

from the beginning; <0 start from the end).

Aaid(n:x); Display of characters starting from position x.

Aaid("0000000000") Display of the attribute value, filling up to 10 characters

with "0".

Aaid(-n-‘0"--------"); Value of the attribute, use last n characters, delete lead-

ing zeros and fill up to 8 characters with "-".

Aaid(n-"Value"); Value of the attribute, use first n characters, delete

characters corresponding to "Value" ("Wert").

Aaid(f"%8.2f"); Output of the attribute value formatted according to C

syntax, here floating-point number with 8 pre-decimal

and 2 decimal places.

Definition of the formula attributes

- 15 -

The attribute with the ID= 5 contains the object name, it be 00123456 in this case.

A5("0000000000");

Value of the attribute with

the ID = 5, and fill up to 10

characters with "0".

Value of the attribute with the ID = 5, and fill up to 10

characters with "0".

„0000123456“

A10212;"-"; A10386;"-";

A10175;

Show values of the listed attributes separated by "-".

Diagram type-sheet format-drawn by

A5(4-'0); Value of the attribute with the ID = 5, use first 4 char-

acters and delete leading zeros.

"12".

A5(4-‘0"--------"); Value of the attribute with the ID = 5, use first 4 char-

acters, delete leading zeros and fill up to 8 characters

with "-".

„------12“

A5(-4-‘0"--------"); Value of the attribute with the ID = 5, use last 4 charac-

ters, delete leading zeros and fill up to 8 characters with

"-".

"----3456"

A5(6-"0012"); Value of the attribute with the ID = 5, use first 6 char-

acters and delete character string "0012"..

"34"

A5(3:5); Value of the attribute with the ID = 5, and 3 characters

are shown from position 5 on.

„456“

AF"manual"5(256); "manual" if the attribute with the ID = 5 was entered

manually.

A"("102875")"(f"%.2f"); Attribute 102875 is to be a floating-point number with

the value -47.1256

"(-47.13)" The value is rounded to 2 decimal places.

A102875(f"%0 10.3f"); "-000047.136"

The value is shown as 10-digit floating-point number,

leading zeros are inserted.

A102675(f"%.6d"); The attribute 102675 is to be an integer with the value

Wert 4711.

"004711"

The result is to be six-digit, therefore leading zeros are

inserted.

Definition of the formula attributes

- 16 -

2.4 Access to higher-order objects (aggregations)

Information from a higher-order object (parent) can be processed for an object.

2.4.1 Parent objects

Key identification P Access to Parent Objects

Syntax :

P [j];

P; Access to direct parent object.

Pj; Access to the project object.

Examples of formulas with access to parent objects:

Formula: Value of the formula attribute (character string):

P;A5; Shows the name of the parent object.

Pj;A5(2); Shows the first 2 characters of the project name.

Pj;Ar; Indicates the reference designator of the project.

2.4.2 Bottom Up

Key identification U Bottom Up - access to first parent object of a CoverID / type

(bottom-up), that is to the first higher-order object with a de-

fined ID (TID or CID).

Syntax:

U [t] [<id>] [(<aid> : ("<valuetext>" | <aidvalue>))];

t Selection via type (and not CID).

id Definition of the relevant parent object (CID or TID).

aid Additional check for attribute value.

valuetext Test value (text) in inverted commas "test value". .

aidvalue Attribute ID whose value at the start object determines the test

value.

Examples of formulas with access to first parent object:

Formula: Value of the formula attribute (character string):

Ucid; Definition of the parent object with the corresponding CID.

Uttid; Definition of the relevant parent object with the corresponding

type ID.

U113;A5; Shows the name of the first device above the current object

(CID device =113).

Ut123;A5; Shows the name of the first motor above the current object

(type ID motor =123).

Definition of the formula attributes

- 17 -

2.4.3 Mostup Parent

Key identification M

Access to the MostUp parent object of a CoverID / type (bot-

tom-up), that is to the uppermost higher-order object with the

specified CoverID.

M returns the current object if it meets the condition and if

there is no higher-up object meeting the condition.

Syntax:

M [t] <id>;

t Selection via type (and not CID).

id Definition of the relevant parent object (CID or TID).

Examples of formulas with access to uppermost higher-order parent object:

Formula: Value of the formula attribute (character string):

Mcid; Access to the uppermost parent object with the specified CID.

There are no limits as to which object types may be present in

the parent chain (example: M223 accesses the uppermost par-

ent object of all cables).

Mttid;

Access to the uppermost parent object with the specified type

ID (example: Mt1101 accesses the uppermost parent object of

the type multi-core cable).

M113;A5; Shows the name of the uppermost device above the current ob-

ject (CID device =113).

Mt123;A5; Shows the name of the uppermost motor above the current ob-

ject (type ID motor =123).

Definition of the formula attributes

- 18 -

2.4.4 Top Down

Key identification T Top down navigation - navigates upward or downward from the

reference object by a specified number of parent objects.

Syntax:

T [s] <counter> [: <cid>];

s Within the aggregation chain, any object types may be present.

Default: The hierarchic chain may be structured only by folder

elements, otherwise the navigation is aborted.

counter Number of steps for the navigation depth.

(>0 upward; <0 downward)

cid Relevant object type

Examples of formulas with access via top-down navigation:

Formula: Value of the formula attribute (character string):

Tn; Navigates upwards to the parent object on the n-th level.

T-n; Navigates downwards to the parent object and from there down

to the n-th level.

Tn:cid; Navigation in the hierarchic chain of the parent objects (with the

specified CID) is upwards to the parent object on the n-th level.

Tsn:cid; Navigation in the hierarchic chain of the parent objects (with the

specified CID) is upwards to the parent object on the n-th hier-

archic level. Within the hierarchic chain, any object types may

be present.

T1:111;A5; Shows the name (A5) of the folder (CID 111 = folder) on the

1st hierarchic level (1).

Definition of the formula attributes

- 19 -

2.5 Navigation aids

2.5.1 Object Navigation

Key identification O Object Navigation - navigation code

Here you can mark an object (object reference) for further edit-

ing. Depending on the key identification used, the stored object

reference is used as starting point after an invalid navigation.

There is only one navigation memory!

Syntax:

O [c | C | m | s | S | j | J | l | L | g | GE];

c Delete marking of the restart point (globally).

C Delete marking of the restart point within a multiple treatment.

m Marks restart point after a multiple treatment.

s Sets a navigation point, the multiple treatment is interrupted.

Return to this point with Oj.

S Sets a navigation point. A multiple treatment is not interrupted.

j Jump to the navigation point specified with Os. The multiple

treatment is interrupted.

J Jump to the navigation point specified with Os. A multiple treat-

ment is not interrupted.

I Sets a jump marking (for Loops).

L Delete the jump marking.

g Go to jump marking (OI) (corresponds to "goto"). The pro-

cessing is continued at the OI marking.

GE The evaluation of the complete formula is terminated ("goto

end").

Definition of the formula attributes

- 20 -

2.5.2 Object navigation with brackets

The square brackets must be set in pairs 'on the same level'. They cover a complete

specification of conditions or are completely within a condition. An opening before the

condition and closing within the condition are not possible.

The brackets function analogously to Os … Oj (set navigation point and return). An active

multiple treatment is as a matter of course not aborted at this point.

Key identification [] Navigation brackets

Treatment of the navigation object by 'enclosing in parenthe-

ses', i.e. when the evaluation reaches the closing bracket "]",

then the navigation object is reset to the initial value, and the

statement is further evaluated.

Syntax:

[[+] <statement sequence>];

+ Continue execution at the end of the brackets even if object

navigation within the brackets fails.

Examples of object navigation:

Formula: Value of the formula attribute (character string):

Rb100;[P;A5;]A5; Navigation to the function of an object. Navigation is carried out

within the brackets to the parent of the function, and the corre-

sponding designation (name =attribute ID=5) is output. Then

the name (attribute ID=5) of the function is output.

Definition of the formula attributes

- 21 -

Exercise:

A composite sheet number should be created in a sheet, which is made of Document

Classification Code according to EN 61355 and the attributes Type of Diagram, Sheet

size, Drawn by and Drawn at, separated by “-“. The attribute Type of Diagram of the

parent diagram contains the Document Classification Code.

Formula used:

Result of the formula: &EFS-Circuit Diagram-A3-AUC-12.07.2012

Definition of the formula attributes

- 22 -

2.6 Access to associated objects (association)

Access to information for an object associated with the current object.

An association points from one object (source) to possibly many other targets. For exam-

ple a unit can be assigned to several sheets but not vice versa. In this case the unit is

the source and the sheets are the target of the association. Association types differ by

their tasks.

A list of all applicable roles is provided by the EB WebHelp in chapter Refer-

ences.

Example of association roles

Role ID

Function to device 100

Function to sheet 106

Project to catalog 40

Object to child object -3

Substitute roles for multiple treatment of core and cable

destinations.

These substitute roles are available only in formula

attributes.

Collective role for 108/109 core

destinations

1104

Collective role for 110 cable desti-

nations

1105

Substitute role for 110 cable desti-

nations on the left

1106

Substitute role for 110 cable desti-

nations on the right

1107

https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_roles.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm

Definition of the formula attributes

- 23 -

2.6.1 Relation Role

Key identification R Access via Role - access via target associations (R) or source

association (Rb).

Syntax:

R [b] [cs] [t] ([#] | [s])

 (<role> | O)

 [(<depth>)]

 [: [f |F] <assocflag>]

 [: <cid>]

 [: +d | +f <calculation> "<formatstring>"]

 [" <text> "];

b Access to associated object via source association (base)

t Access to associated object via target associations with re-

striction to the type, <cid> represents the object type (tid)

here.

cs Access to 'siblings' (collect sibling).

Indicates the number of associated objects. The navigation ob-

ject is kept.

s Sorting (according to standard sorting logic of EB).

role Association roll.

O List of the elements of an active object group (see object groups

GO).

depth In connection with cs: Navigation to sibling object (<0 to prede-

cessor; >0 to successor).

assocflag Relations having (:f) or not having (:F) the specified relation

flags.

Specified relation flags:

1 = the association contains a conflict

2 = manually assigned association

32 = the association is read-only

64 = the association is negative (special contextual meaning)

cid Restriction to the objects with the specified cid.

+d Calculation with integer arithmetic (long)

+f Calculation with decimal number arithmetic (double).

formatstring Output string with formatting information.

Possible output formatting is described in the annex.

text Text to be used for separating multiple results.

Definition of the formula attributes

- 24 -

Syntax of <calculation>:

(<aid> [<charpos>] | #) [[* | + | - | /] [p] <aid> | #]

aid Attribute ID.

charpos Start index when reading in numbers from text attributes (0

based).

In connection with the # operator the number of objects.

* + - / Mathematical operators.

Examples of formulas:

Formula: Value of the formula attribute (character string):

R-3; Navigation to child objects (roll -3).

R108; Navigates from pin to wire (role 108).

Rt108:904; Navigates from pin to wire (role 108), restricted to PE (TID =

904).

R100" / ";A5; At a function: Specifies the names of all devices associated with

the function (roll 100), separated by " / ".

R100:223" / ";Ar; At a function: Specifies the long names (full) of all cables asso-

ciated with the function (roll 100 = all devices with restriction at

CID=223), separated by " / ".

R100:223" /

";RM1:2;A5;

At a function: Specifies the names of all cables associated with

the function, separated by " / ". If more than 1 cable is associ-

ated with the function, then only 2 cables are to be shown.

Rb100;A5; At a device: Specifies the name of the associated function.

Rb100;A5;"(";A25;

")";

At a device: Function name and comment for the associated

function.

R-3" / ";A5; Lists all aggregated objects (child objects), separated by " / ".

Result of the formula: A1 / A2 / A3

Definition of the formula attributes

- 25 -

Exercise:

Create a representation of the devices connected to a wire with its reference name,

material number and the assigned function (in parentheses).

Function used:

Result of the formula:

++Unit 1 -D1 Material A (.PD) -- ++Unit 2 -M2 Material B (.S)

Definition of the formula attributes

- 26 -

2.6.2 Relation Multi

Key identification RM Treatment of multiple targets (Relation Multi).

Syntax:

RM [p | s] <counter> [: <modcounter>] [“ <text> “];

p Specifies that the entered <text> is to become the Prefix upon

reaching the limit (counter).

s Specifies that the entered <text> is to become the Suffix upon

reaching the limit (counter).

counter Defines the limit from which the special treatment is to start.

When the number of objects reaches the value <counter>,

then the number is changed to <modcounter>.

<modcounter=0> has a special function:

• The prefix/suffix becomes the result string.

• The 'current' object is set to 'nothing'.

• The number of previous multiple objects is reduced to 0.

Thus the further evaluation of the subsequent statements is

aborted and only continued at a later jump flag.

modcounter Defines the modified number of objects to be dealt with.

<modcounter> must be lower than <counter>.

text Text that is to become the prefix or suffix.

Examples:

…;RMpm"Text";… Modification of the display of the associated objects found.

If the number is greater than or equal to m, then the gener-

ated lines get the text prefixed (p=prefix).

…;RMm:n;… Restriction of the display of the associated objects found.

If the number is greater than or equal to m, then only n ob-

jects are shown.

If the number is smaller than m, then all objects are shown.

Definition of the formula attributes

- 27 -

2.6.3 Relation object groups

You can use an object group to restrict a formula evaluation to a given number of ob-

jects. The specification of the number of objects cannot be achieved by simple naviga-

tion. You can use an object group e.g. to prevent an object from being treated repeat-

edly.

There is only one object group per formula attribute.

When adding objects to the group, you can optionally specify an attribute whose value is

checked for matching before the object is added to the group. The same holds for delet-

ing objects from the group. The first object that is added to the object group by means of

its attribute ID defines the condition. An object group may contain elements that were

added in different ways, i.e. with or without checking a condition.

Key identification GO Treatment of object groups (Grouped Objects)

Syntax:

GO [+ [A<id>]] | [- [A<id>]] | t | c;

GO+Aid The first object of a group defines the condition and is itself

added to the group.

GO-Aid The first object of a group defines the condition and is itself not

added to the group.

+ Add object after checking the condition. The first object of the

group specifies the condition.

- Delete object.

t Check whether the object is already contained in the group.

The test returns a Boolean value (0 or 1).

c Delete group.

Definition of the formula attributes

- 28 -

Exercise:

There should be created a list that contains all pins and specification devices separated

by “/” (CID 118 = Pin, CID 113= Device, Role 119 = Specification).

Formula used:

Result of the formula:

+F1 MT1 2 / +F1 MT1 8 / +F1 MT1 4 / +F1 MT1 1 / +F1 MT1 3 / +F1 MT1 6 / +F1 MT1

7 / +F1 MT1 9 / +F1 MT1 5 / Specifications Sensors T - Temperature Temperature

Resistor with Transducer / Specifications Sensors L - Level E&H_FMB70 /

Definition of the formula attributes

- 29 -

2.7 Integration of mathematical operations

When using attribute values in mathematical operations, please note that unusable at-

tribute values are used with the value 1 as default. You can use parameters to specify

that in certain cases the value 0 is returned.

You can carry out mathematical operations only with attributes from the current object.

In order to use data from other objects, you must store them intermediately in registers

(r) and recall them as needed (R). Using the registers, you can then for the ongoing cal-

culation include values from other objects in the same formula.

Key identification = Mathematical operations / operators

Syntax:

= [[r | R] <RegSel>] (d | f | u) <expression> ["<formatstring> "];

r RegSel The calculated value is stored in a mathematical register (inter-

mediate memory).

Register: Values 1 – 5 are possible.

R RegSel The value of a register (1 – 5) is read.

Register: Values 1 – 5 are possible.

d Specification of the integer calculation (Double)

f Specification of the floating point calculation (Float)

u Definition of the floating point operation including related unit

(Unit).

You are recommended, to use only mathematical operators and

the squre root. If only one operand has a unit, then this one is

used. If both operands have units, then the one stated first will

be used allocating units from left to right.

expression (+ | - | * | / | & | | | ^ |Q | S | s | xy | exp) <ar-
gument> [<argument>]

 +, -, *, / Mathematical operators

&, |, ^ Bitwise operators

Q Square Root

S Sine (radiand)

s Sine (degree)

xy Power

exp Exponent of base e

argument:

<attribute> | <constant> | <expression> | <relation>

attribute A [n] [e] [f] <aid> [:<charpos>]

n If the attribute at the object is

missing, then 0 is returned instead

of 1.

e If the attribute at the object is

empty, then 0 is returned instead

of 1.

Definition of the formula attributes

- 30 -

f If no evaluable numerical compo-

nent is present in the attribute for

the object, then 0 is returned in-

stead of 1.

charpos Position in the character string

from which to start.

constant K<value> | pi | e

Value is a fixed sequence of numbers. A decimal

point must be used for floating point values.

Thousands separators are not allowed.

e = Euler's number

expression See above.

relation #[P] <role>;

Returns the number of objects that are associ-

ated with each other (and are found via the role).

P: The role is calculated starting from the parent.

role: Relation identification

A list of all applicable roles is provided by

the EB WebHelp in chapter References.

>0: Forward relation direction

>0: Backward relation direction

formatstring Output string with formatting information.

Possible output formatting is described in the annex.

Examples of formulas with mathematical operations:

Formula: Value of the formula attribute (character string):

=#-3; Returns the number of child objects assigned to the current ob-

ject.

=#107; Number of sheets assigned to the unit (roll 107 = UnitToDi-

agram).

=#-107; Number of units assigned to the sheet.

=f+A1234A5678; Adds the values of the attributes with the IDs 1234 and 5678.

Representation as floating-point number

=u+A1234A5678; Adds the values of the attributs with ID 1234 and 5678.

Example:

A1234 = 3 cm

A5678= 4 m

The value of the formula attribute is 403 cm.

A1234= 4,0 m

A5678=3 cm

The value of the formula attribute is 4,0 m.

https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_roles.htm
https://download.aucotec.com/Documentation/EBWebhelp/jkprrv-ezk_1WH-ttrupkgatznnq/references/eb_reference_overview.htm

Definition of the formula attributes

- 31 -

=d*A1234A5678; Multiplies the values of the attributes with the IDs 1234 and

5678. Representation as integer.

=f*A1234K1.2; Multiplies the values of the attributes with the IDs 1234 and

5678 by the constant 1.2.

=fxyA1234K3; Raises the attribute (base) to the power of the constant 3 (ex-

ponent)

=fxyA1A2; Raises attribute A1 (base) to the power of attribute A2 (expo-

nent)

=fexpA1; Defines the exponential of attribute A1 (exponent) of base e

=d*A10061#P126; Determination of the amount of a material for a hook-up. The

amount of the material is multiplied by the use of the hook-up.

=d*A1234#-3; Multiplication of the attribute value with the number of child ob-

jects.

=r3d*A1234#-3; Multiplication of the attribute value with the number of child ob-

jects. The result is stored in register 3.

=d*R3K2; Multiply the content of register 3 by 2.

=d+*A123K3A456; Corresponds to the mathematical formula.

(A123*3)+A456

=d*K2+A123A456; Corresponds to the mathematical formula.

2*(A123+A456)

=d*Ane123A456; Corresponds to the mathematical formula.

A123*A456

Or 0*A456 if A123 is not present at the object or empty.

=r1d*K2K2;=r2d+

K3K3;=d+R1R2;

The result of the multiplication 2*2 (=4) is stored in register 1.

The result of the addition 3+3 (=6) is stored in register 2.

The contents of registers 1 and 2 are added.

Result: 10

Definition of the formula attributes

- 32 -

2.8 Object check

Key identification VO Verify object for a formula (Verify Object)

If the test result is negative, the formula is terminated.

Syntax:

VO s | S | d | D | a | A | <cid>;

s Check whether the current object of the formula attribute rep-

resents a symbol.

S Check whether the current object of the formula attribute does

not represent a symbol.

d Check whether the current object of the formula attribute rep-

resents a device.

D Check whether the current object of the formula attribute does

not represent a device.

a Check whether the current object of the formula attribute rep-

resents an SAO (symbol without AO).

A Check whether the current object of the formula attribute does

not represent an SAO (symbol without AO).

cid Check whether the current object of the formula attribute cor-

responds to the specified cover ID.

Definition of the formula attributes

- 33 -

2.9 Conditions

You can specify conditions for formula attributes. Conditions are indicated by braces {}.

Conditions are written in the manner of a case instruction.

There are always several alternatives per condition. Conditions can be nested.

The formula attribute must contain a blank after the reference value for a condi-

tion!

Key identification { } Condition

Syntax:

{ [j] <condition formula>

[{ [= | < | > | <> | : ("<value string>" | <aid>)]1+ blank
<execution formula> }]1+ }

j Following processing of the condition, jump to the object pre-

ceding the execution.

Condition formula Formula string whose result yields the test string.

 =, <, >, <> Check for equality, inequality, larger or smaller. Numbers are

also checked as string comparison.

Value string The character string that is compared with the test string. Here

it is also possible to access register contents.

aid Alternative value of an attribute at the start object that is com-

pared with the test string.

:"" This statement (without condition) specifies the Else case of

the case instruction. Here you can specify what is to be done if

none of the other conditions is met.

Execution formula Instruction that is carried out if the test was successful. Any

sequence of possible commands is permitted as execution for-

mula. For example:

- Text included in inverted commas (" ")

- Attribute value

- Formula

- …..

Examples of formulas with conditions:

Comparison of 2 attribute values:

The attribute with the ID=245 contains the width and that with the ID = 246 the height

of an object.

• {A245;{=246 "equal";}{:"" "not equal";}};

Result for width = 20.00 mm and height = 20.00 mm "equal"

Result for width = 20.00 mm and height = 30.00 mm "unequal"

• {A245;{=246 "2 x ";A245;}{:"" =*A245A246; " mm";}};

Result for width = 20.00 mm and height = 20.00 mm: "2 x 20.00 mm"

Result for width = 20.00 mm and height = 30.00 mm: "600.00 mm"

• {=f+A245A246;{="40" "forty";}{:"" =f+A245A246; " mm";}};

If the sum of height and width is = 40, "forty" is to be output, otherwise the sum of

width and height is to be shown as floating point number in "mm"

Definition of the formula attributes

- 34 -

Check whether an attribute value meets a certain condition:

• {AF245(256);{="1" "manual ";A245;}{:"" A245;}};

AF245(256) issues the value "1" if the attribute with the ID = 245 was entered man-

ually.

Result for manual entry of the attribute with the ID = 245: "manual 20.00 mm".

• {A10025;{="1" A10001;}{:"" A10002;}};

Let the attribute with the ID=10025 be a Boolean one.

If it has the value "1", then the value of the attribute with the ID=10001 is output,

otherwise the value of the attribute with the ID=10002.

• {A5;{="20"<"10">77 "within range";}{:"" "not within range";}};

If the value of the attribute with the ID=5 equals 20 or is smaller than 10 or larger

than the value of the attribute with the ID=77 of the start object, then the result of

the formula is "within range". If the condition is not met, then the message "not

within range" is issued.

• {A5;{="1"<"2" "<2";}{="10">"24" ">24";}{:"" "default";}};

If the value of the attribute with the ID = 5 is equal to 1 or smaller than 2, then

"<2" is issued If the value is equal to 10 or larger than 24, ">24" is issued. If none

of these conditions is met, then "default" is issued.

Definition of the formula attributes

- 35 -

Exercise:

For each child object of the first level (A1, A2) all child objects of the second level (1.2,

1.3, 2.2, …) should be listed. The child objects of the first level should be separated

with “ / “ those of the second level with “ # “.Once the value of the child object of the

second level reaches 2.3, the execution of the formula should be terminated.

Formula used:

Result of the formula: START 1.2 # 1.3 / 2.2 #

Definition of the formula attributes

- 36 -

Exercise:

If the equipment is a termial, the output should be the function of the terminal block,

the terminal block, the function of the terminal and the terminal. Otherwise the output

should be “<> Terminal“.

Function used:

Result of the formula:

at Terminal (Start object 1): .PS -0X1 .PS 1

at End Cover (Start object 2): <>Terminal

Definition of the formula attributes

- 37 -

2.10 Annex

2.10.1 Output formatting

The format specification consists of optional and mandatory fields.

Every single character of the format specification stands for a certain format option. The

simplest form would be the percent character followed by a character (e.g. %s).

If the percent character is followed by a character that does not correspond to any for-

mat option, then the character is copied to the standard output.

Formatting the output

Syntax:

%[flags] [width] [.precision] type

flags - Left alignment, the default value is right

+ Enforces the sign (+ or -). Otherwise the sign is shown only

for negative values.

0 Fill up with leading zeros to the maximum field length. In

combination with "-" there is no filling up of the field.

" "
(blank)

Prefixes positive output values with a blank. In combination

with "+" no blank is prefixed.

Together with type = f, a decimal point is set in any case. Is

ignored with type = d.

width Specifies the minimum length of the output in characters. If the output

is shorter, then the output is complemented to the minimum length with

blanks on the left or right, depending on the orientation. The length

specification never causes a value to be shortened. All characters are

output.

.precision Optional. Maximum number of characters or the minimum number of

digits for integer values.

type d Integer display (Double)

The value specifies the minimum number of digits to be out-

put. If the number is smaller, then leading zeros are pre-

fixed.

f Floating point display (Float)

The value specifies the number of decimals. If a decimal

point is output, then at least one digit is shown in front of it.

The value is rounded according to the decimal places.

	1 What are formula attributes?
	1.1 Definition of the formulas
	1.2 Basics in the creation of formula attributes
	1.3 Where are formula attributes defined?

	2 Definition of the formula attributes
	2.1 Integration of system information
	2.1.1 Version information
	2.1.2 Environment information
	2.1.2.1 Date and time
	2.1.2.2 Environment Text
	2.1.2.3 Environment Language

	2.2 Integration of texts
	2.3 Integration of attributes
	2.4 Access to higher-order objects (aggregations)
	2.4.1 Parent objects
	2.4.2 Bottom Up
	2.4.3 Mostup Parent
	2.4.4 Top Down

	2.5 Navigation aids
	2.5.1 Object Navigation
	2.5.2 Object navigation with brackets

	2.6 Access to associated objects (association)
	2.6.1 Relation Role
	2.6.2 Relation Multi
	2.6.3 Relation object groups

	2.7 Integration of mathematical operations
	2.8 Object check
	2.9 Conditions
	2.10 Annex
	2.10.1 Output formatting

